5 research outputs found

    Data-driven building energy efficiency prediction based on envelope heat losses using physics-informed neural networks

    Full text link
    The analytical prediction of building energy performance in residential buildings based on the heat losses of its individual envelope components is a challenging task. It is worth noting that this field is still in its infancy, with relatively limited research conducted in this specific area to date, especially when it comes for data-driven approaches. In this paper we introduce a novel physics-informed neural network model for addressing this problem. Through the employment of unexposed datasets that encompass general building information, audited characteristics, and heating energy consumption, we feed the deep learning model with general building information, while the model's output consists of the structural components and several thermal properties that are in fact the basic elements of an energy performance certificate (EPC). On top of this neural network, a function, based on physics equations, calculates the energy consumption of the building based on heat losses and enhances the loss function of the deep learning model. This methodology is tested on a real case study for 256 buildings located in Riga, Latvia. Our investigation comes up with promising results in terms of prediction accuracy, paving the way for automated, and data-driven energy efficiency performance prediction based on basic properties of the building, contrary to exhaustive energy efficiency audits led by humans, which are the current status quo.Comment: 8 pages, 1 figur

    Transfer learning for day-ahead load forecasting: a case study on European national electricity demand time series

    Full text link
    Short-term load forecasting (STLF) is crucial for the daily operation of power grids. However, the non-linearity, non-stationarity, and randomness characterizing electricity demand time series renders STLF a challenging task. Various forecasting approaches have been proposed for improving STLF, including neural network (NN) models which are trained using data from multiple electricity demand series that may not necessary include the target series. In the present study, we investigate the performance of this special case of STLF, called transfer learning (TL), by considering a set of 27 time series that represent the national day-ahead electricity demand of indicative European countries. We employ a popular and easy-to-implement NN model and perform a clustering analysis to identify similar patterns among the series and assist TL. In this context, two different TL approaches, with and without the clustering step, are compiled and compared against each other as well as a typical NN training setup. Our results demonstrate that TL can outperform the conventional approach, especially when clustering techniques are considered

    DeepTSF: Codeless machine learning operations for time series forecasting

    Full text link
    This paper presents DeepTSF, a comprehensive machine learning operations (MLOps) framework aiming to innovate time series forecasting through workflow automation and codeless modeling. DeepTSF automates key aspects of the ML lifecycle, making it an ideal tool for data scientists and MLops engineers engaged in machine learning (ML) and deep learning (DL)-based forecasting. DeepTSF empowers users with a robust and user-friendly solution, while it is designed to seamlessly integrate with existing data analysis workflows, providing enhanced productivity and compatibility. The framework offers a front-end user interface (UI) suitable for data scientists, as well as other higher-level stakeholders, enabling comprehensive understanding through insightful visualizations and evaluation metrics. DeepTSF also prioritizes security through identity management and access authorization mechanisms. The application of DeepTSF in real-life use cases of the I-NERGY project has already proven DeepTSF's efficacy in DL-based load forecasting, showcasing its significant added value in the electrical power and energy systems domain

    Targeted demand response for flexible energy communities using clustering techniques

    Full text link
    The present study proposes clustering techniques for designing demand response (DR) programs for commercial and residential prosumers. The goal is to alter the consumption behavior of the prosumers within a distributed energy community in Italy. This aggregation aims to: a) minimize the reverse power flow at the primary substation, occuring when generation from solar panels in the local grid exceeds consumption, and b) shift the system wide peak demand, that typically occurs during late afternoon. Regarding the clustering stage, we consider daily prosumer load profiles and divide them across the extracted clusters. Three popular machine learning algorithms are employed, namely k-means, k-medoids and agglomerative clustering. We evaluate the methods using multiple metrics including a novel metric proposed within this study, namely peak performance score (PPS). The k-means algorithm with dynamic time warping distance considering 14 clusters exhibits the highest performance with a PPS of 0.689. Subsequently, we analyze each extracted cluster with respect to load shape, entropy, and load types. These characteristics are used to distinguish the clusters that have the potential to serve the optimization objectives by matching them to proper DR schemes including time of use, critical peak pricing, and real-time pricing. Our results confirm the effectiveness of the proposed clustering algorithm in generating meaningful flexibility clusters, while the derived DR pricing policy encourages consumption during off-peak hours. The developed methodology is robust to the low availability and quality of training datasets and can be used by aggregator companies for segmenting energy communities and developing personalized DR policies

    A comparative assessment of deep learning models for day-ahead load forecasting: Investigating key accuracy drivers

    Full text link
    Short-term load forecasting (STLF) is vital for the effective and economic operation of power grids and energy markets. However, the non-linearity and non-stationarity of electricity demand as well as its dependency on various external factors renders STLF a challenging task. To that end, several deep learning models have been proposed in the literature for STLF, reporting promising results. In order to evaluate the accuracy of said models in day-ahead forecasting settings, in this paper we focus on the national net aggregated STLF of Portugal and conduct a comparative study considering a set of indicative, well-established deep autoregressive models, namely multi-layer perceptrons (MLP), long short-term memory networks (LSTM), neural basis expansion coefficient analysis (N-BEATS), temporal convolutional networks (TCN), and temporal fusion transformers (TFT). Moreover, we identify factors that significantly affect the demand and investigate their impact on the accuracy of each model. Our results suggest that N-BEATS consistently outperforms the rest of the examined models. MLP follows, providing further evidence towards the use of feed-forward networks over relatively more sophisticated architectures. Finally, certain calendar and weather features like the hour of the day and the temperature are identified as key accuracy drivers, providing insights regarding the forecasting approach that should be used per case.Comment: Keywords: Short-Term Load Forecasting, Deep Learning, Ensemble, N-BEATS, Temporal Convolution, Forecasting Accurac
    corecore